Math 115
Summer 2017 Lecture 14 $\sqrt{x y}$

Ch. 5 Polynomial factoring $\dot{\varepsilon}$ More Zero-factor Property or Zero-Product Rule If $A \cdot B=0$, then $A=0$ or $B=0$, Maybe both.

$$
0 \cdot(x-3)=0, \quad(x+7) \cdot 0=0
$$

Solve $(x+7)(x-3)=0$ by Z.F.P.

$$
\begin{array}{cc}
x+7=0 & \text { or } \quad x-3=0 \\
x=-7 & x=3
\end{array} \Rightarrow\{-7,3\}
$$

Solve $\underbrace{(x-5)(x+10)(2 x-3)}_{\rho}=\frac{0}{9}$ by Z.F.P. one side has to must be in factored be Zero.

$$
\begin{array}{ccc}
x-5=0, & \begin{array}{cc}
\text { form. } & \\
x+10=0, & 2 x-3=0 \\
x=5 & \\
& x=-10 \\
& 2 x=3 \\
& x=3 / 2
\end{array}
\end{array}
$$

Solve $\quad(x+7)(x-7)(4 x+5)(4 x-5)=0$ by Z.F.P.
\rightarrow (1) RHS $=0$
(2) LHS must be completely factored.

$$
\begin{array}{lll}
x+7=0 & , x-7=0, & 4 x+5=0,
\end{array} \begin{array}{ll}
x=-7 & x=7
\end{array}
$$

How to Solve Polynomial equations:

1) make $\mathrm{RHS}=0$
2) Factor LHS completely
3) Use Z.F.P. to find all Solutions

Solve $\quad x^{2}-12=x \quad \rightarrow x-4=0$ or $x+3=0$

$$
x^{2}-12-x=0 \quad x=4 \quad x=-3
$$

Solve $\quad x^{2}=36-5 x$
(1) Make RHS $=0$

$$
x^{2}-36+5 x=0
$$

(2) Factor LHS Completely

$$
\begin{aligned}
& x^{2}+5 x-36=0 \\
& (x+9)(x-4)=0
\end{aligned}
$$

(3) use Z.F.P. to find all Solutions

$$
\begin{gathered}
x+9=0 \quad x-4=0 \\
x=-9 \quad x=4 \\
\{-9,4\}
\end{gathered}
$$

Solve:

$$
3 x-5=0 \quad \frac{2}{3} x+1=0
$$

(1) $(3 x-5)\left(\frac{2}{3} x+1\right)=0 \quad \frac{1}{x=\frac{5}{3}}$

$$
x=\frac{-3}{2}
$$

$$
\left\{\frac{-3}{2}, \frac{5}{3}\right\}
$$

(2)

$$
\begin{array}{cc}
x^{2}+8 x=-15 & \text { (3) } 2 x^{2}-5=3 x \\
x^{2}+8 x+15=0 & 2 x^{2}-5-3 x=0 \\
\vdots & 2 x^{2}-3 x-5=0 \\
(x+5)(x+3)=0 & \vdots \\
x+5=0 \quad x+3=0 & (2 x-5)(x+1)=0 \\
x=-5 \quad x=-3 & 2 x-5=0 \quad x+1=0 \\
\{-5,-3\} & \left\{-1, \frac{5}{2}\right\} \\
x=5 / 2 & x=-1
\end{array}
$$

The Product of two Consecutive integers is
(20). find all such integers.

$$
d_{x} \varepsilon_{1}^{\prime} x+1
$$

$$
\begin{aligned}
& x(x+1)=20 \\
& x^{2}+x-20=0 \\
& (x+5)(x-4)=0 \\
& x+5=0 \quad x-4=0 \\
& x=-5 \quad x=4
\end{aligned}
$$

The area of a rectangular pool is $45 \mathrm{~m}^{2}$. Its length is 1 m shorter than twice its width.

1) Draw ε label

2) find an expression for its area

$$
\begin{aligned}
A & =L W \\
& =(2 x-1) x \\
& =2 x^{2}-x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } A=45 m^{2} \\
& 2 x^{2}-x=45
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \underbrace{2 x^{2}-10 x}+\underbrace{9 x-45}=0 \\
& 2 x(x-5)+9(x-5)=0 \\
& (x-5)(2 x+9)=0
\end{aligned}
$$ by Z.F.T.

The sum of squares of two consecutive even
integers is 100.
find all such integers.

$$
\left\{\begin{array}{c}
x \quad x^{2} \dot{\varepsilon}_{1}(x+2)^{2} \\
x^{2}+(x+2)^{2}=100 \\
x^{2}+(x+2)(x+2)=100 \\
x^{2}+x^{2}+2 x+2 x+4-100=0 \\
2 x^{2}+4 x-96=0 \\
\text { Divide by } 2 \\
x^{2}+2 x-48=0
\end{array}\right.
$$

Solve:
(1)

$$
\begin{aligned}
& (x+8)(2 x-7)(2 x+7)=0 \\
& x+8=0,2 x-7=0,2 x+7=0 \\
& x=-8 \quad x=\frac{7}{2} \quad x=\frac{-7}{2} \\
& \text { (2) } 4 x^{2}-25=0 \\
& \text { (3) } x(3 x+1)=14 \\
& (2 x)^{2}-5^{2}=0 \\
& A^{2}-B^{2}= \\
& (2 x+5)(2 x-5)=0 \\
& (A+B)(A-B) \\
& \underbrace{3 x^{2}+x-14}_{-42} \begin{array}{r}
-14 \\
P \\
S
\end{array}=-42 \\
& 7 \varepsilon-6 \\
& x=-5 / 2 \quad x=5 / 2 \\
& \left\{ \pm \frac{5}{2}\right\} \quad\left\{-\frac{7}{3}, 2\right\} \\
& (x-2)(3 x+7)=0 \\
& x=2 \quad \vdots=-\frac{7}{3}
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& \text { Solve: } \\
& \begin{array}{cc}
49 x^{2}(2 x-5)-36(2 x-5)=0 & \left\{\begin{array}{c}
(7 x)-(6) \\
A^{2}-B^{2}
\end{array}\right. \\
(2 x-5)\left(49 x^{2}-36\right)=0 & (A+B)(A-B) \\
(2 x-5)(7 x+6)(7 x-6)=0 \\
\vdots & \vdots \\
x=\frac{5}{2} \quad x=\frac{-6}{7} \quad x=\frac{6}{7}
\end{array} \quad\left\{ \pm \frac{6}{7}, \frac{5}{2}\right\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& 5 x^{2}-10 x \\
& 5 x(x-2)+6(x-2)=0 \\
& (x-2)(5 x+6)=0 \\
& \vdots \\
& x=2 \quad x=\frac{-6}{5}
\end{aligned} \quad\left\{\begin{array}{l}
6 x
\end{array} \quad\left\{\frac{-6}{5}, 2\right\}\right.
$$

Factor Completely:

$$
\begin{aligned}
& \text { 1) } 2 x^{2}-3 x \\
& P=-10 \\
& S=-3 \\
& -582 \\
& \text { 2) } 64 x^{2}-25 \\
& =(8 x)^{2}-5^{2} \\
& =(8 x+5)(8 x-5)
\end{aligned}
$$

3) $8 x^{3}+125$

$$
=(2 x)^{3}+5^{3}
$$

$$
=(2 x+5)\left(4 x^{2}-10 x+25\right)
$$

Right Triangle

find x :

x is 3 .

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Thru
By Pythagorean thru

$$
\begin{aligned}
& x^{2}+4^{2}=5^{2} \\
& x^{2}+16=25 \\
& x^{2}+16-25=0
\end{aligned} \quad \begin{array}{cc}
x^{2}-9=0 \\
(x+3)(x-3)=0 \\
x & x=3
\end{array}
$$

find $x:$

Right Triangle
Pythagorean them

$$
\begin{aligned}
& 6^{2}+x^{2}=10^{2} \\
& 36+x^{2}=100 \\
& 36+x^{2}-100=0 \\
& x^{2}-64=0 \quad x^{2}-8^{2}=0 \\
& (x+8)(x-8)=0 \\
& \vdots=8 \quad x=8
\end{aligned}
$$

Find x : Right Triangle

$$
x+7
$$

\square
\qquad

$$
x
$$

Pythagorean Them

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+(x+7)^{2}=(2 x+3)^{2}
\end{aligned}
$$

$$
\text { bu } \rightarrow
$$

Divide by -2 o

$$
x^{2}+(x+7)(x+7)=(2 x+3)(2 x+3)
$$

to reduce

$$
x^{2}-x-20=0
$$

$$
(x-5)(x+4)=0
$$

$$
\begin{aligned}
& x^{2}+x^{2}+7 x+7 x+49=4 x^{2}+6 x+6 x+9 \\
& 2 x^{2}+14 x+49=4 x^{2}+12 x+9 \\
& 2 x^{2}+14 x+49-4 x^{2}-12 x-9=0 \\
& -2 x^{2}+2 x+40=0
\end{aligned}
$$

$$
x=5
$$

Graph of $y=a x^{2}+b x+c, a \neq 0$ is Called parabola.

$$
\hat{\tau} \quad a>0
$$

 find all intercepts for

$$
y=0 \quad x^{2}-x-6=0
$$

$$
\begin{gathered}
y=x^{2}-x-6 \\
R A \\
y-\operatorname{Int}(0,-6) \\
x-\operatorname{Int}(3,0) \dot{\Sigma} \\
(-2,0)
\end{gathered}
$$

find all intercepts for $y=3 x^{2}-8 x+5$.
Y-Int \Rightarrow Let $x=0$, find Y.
$x-\operatorname{Int} \Rightarrow$ Let $Y=0$, find x.

$$
Y \text {-Int }(0,5)
$$

x-Int $y=0 \quad 3 x^{2}-8 x+5=0$

$$
\begin{aligned}
& (3 x-5)(x-1)=0 \quad \begin{array}{r}
15 \quad P=15, S=-8 \\
-3 \varepsilon_{1}-5
\end{array}
\end{aligned}
$$

find all intercepts for the graph of

$$
\begin{array}{ll}
y=25 x^{2}-100 & x-\text { Int } \\
y \text {-Int } \rightarrow(0,-100) & y=0 \\
& 25 x^{2}-100=0 \\
& \text { Divide by } 25 \text { to } \\
& \text { reduce } \\
x \text {-Ants }(2,0) \dot{\varepsilon}(-2,0) \quad & x^{2}-4=0 \\
& x^{2}-2^{2}=0 \\
& (x-2)(x+2)=0 \\
& \dot{x}=2 \quad \dot{x}=-2
\end{array}
$$

Square-Root method:
If $x^{2}=k, k \geq 0$, then $x= \pm \sqrt{k}$
Solve

$$
\begin{aligned}
& x^{2}-5=20 \\
& x^{2}=25 \quad \text { use S.R.M. } \\
& x= \pm \sqrt{25} \quad x= \pm 5 \quad\{ \pm 5\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& x^{2}+4=44 \\
& x^{2}=44-4
\end{aligned} \quad \begin{aligned}
& \rightarrow x^{2}=40 \\
& x= \pm \sqrt{40} \quad x \approx \pm 6.324 \\
& \text { can be Simplify: }\{ \pm \sqrt{40}\}
\end{aligned}
$$

Solve $(3 x-5)^{2}=49$ by S.R.M.

$$
\begin{array}{rl}
3 x-5 & = \pm \sqrt{49} \\
3 x-5 & = \pm 7 \\
3 x-5=7 & 3 x-5=-7 \\
3 x=12 & 3 x=-2 \\
x=4 & x=\frac{-2}{3} \\
& \left\{\frac{-2}{3}, 4\right\}
\end{array}
$$

Solve by S.R.M.: $\quad(2 x+7)^{2}=121$

$$
\begin{gathered}
2 x+7= \pm \sqrt{121} \\
2 x+7= \pm 11 \\
2 x+7=11 \quad 2 x+7=-11 \\
x=2 \quad x=-9
\end{gathered}
$$

Make a perfect-Squave

$$
\begin{aligned}
& x^{2}+6 x+9=(x+3)^{2} \\
& x^{2}-10 x+25=(x-5)^{2} \\
& x^{2}+15 x+\frac{225}{4}=\left(x+\frac{15}{2}\right)^{2} \\
& \frac{1}{2} \cdot 15=\frac{15}{2} \\
& x^{2}-\frac{4}{5} x+\frac{4}{25}=\left(x-\frac{2}{5}\right)^{2} \\
& \frac{1}{2} \cdot 4 / 5=\frac{2}{5}
\end{aligned}
$$

Solve $x^{2}-10 x-24=0$ by
Completing the square method.

$$
\begin{aligned}
& x^{2}-10 x-24=0 \\
& x-5= \pm 7 \text { of } x^{2}-10 x+25=24+25 \\
& x-5=7 \\
& x-5=-7 \quad \text { use S.R.M. to find all } \\
& x=-2 \\
& \{-2,12\} \\
& x-5= \pm \sqrt{49} \quad \text { Solutions }
\end{aligned}
$$

Solve $x^{2}+13 x-30=0$ by completing the ser method.

$$
\begin{gathered}
x^{2}+13 x-30=0 \\
\frac{1}{2} \cdot 13=\frac{13}{2} \sigma\left(x+\frac{169}{4}=30+\frac{169}{4}\right. \\
x+\frac{13}{2}=\frac{17}{2} G\left(x+\frac{13}{2}\right)=\frac{289}{4} \\
x=2 \\
x+\frac{13}{2}=\frac{17}{2} \quad x=-15 \quad \text { S.R.M. } \\
x+\frac{13}{2}= \pm \sqrt{\frac{289}{4}} \\
x=1512\} \\
x+\frac{13}{2}= \pm \frac{17}{2}
\end{gathered}
$$

Quadratic Eqn: $a x^{2}+b x+c=0 ; a \neq 0$
Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& 4^{x^{2}}+13 x-30=0 \\
& a=1 \quad b=13 \quad c=-30 \quad b^{2}-4 a c=(13)^{2}-4(1)(-30) \\
& \left.x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\{-15,2\}\right\}=\begin{array}{l}
=169+120 \\
=289
\end{array} \\
& x=\frac{-13 \pm \sqrt{289}}{2(1)}=\frac{-13 \pm 17}{2} \quad x=\frac{-13+17}{2}=\frac{4}{2}=2
\end{aligned}
$$

Solve $(2 x-3)(3 x+1)=7$ by
Quadratic formula. Hint: FOIL ε simplify

$$
\begin{aligned}
& 6 x^{2}+2 x-9 x-3-7=0 \\
& \begin{aligned}
6 x^{2}-7 x-10=0 \\
a=6, \quad b=-7, c=-10
\end{aligned} \quad \mapsto b^{2}-4 a c=(-7)^{2}-4(6)(-10) \\
& \\
& =49+240 \\
& \begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-7) \pm \sqrt{289}}{2(6)}==\frac{7 \pm 17}{12} \\
& \begin{aligned}
x=\frac{7+17}{12}=2 \quad x=\frac{7-17}{12}=\frac{-5}{6}
\end{aligned} \quad\left\{\frac{-5}{6}, 2\right\}
\end{aligned}
\end{aligned}
$$

The length of a rectangle with area $33 \mathrm{ft}^{2}$ is 1 ft shorter than 4 times its width. find its dimensions. $35+$ by

$$
x(4 x-1)=332
$$

$$
\begin{aligned}
& x \begin{array}{ll}
x & \begin{array}{l}
4 x^{2}-x-33=0 \\
4 x-1
\end{array} \\
a=4 & b=-1 \quad c=-33 \\
b^{2}-4 a c=(-1)^{2}-4(4)(-33)
\end{array} \\
&=529 \\
& x=\frac{-b \pm \sqrt{b^{2}-a c}}{2 a} \\
& \begin{array}{rll}
x=\frac{-(-1) \pm \sqrt{529}}{2(4)}=\frac{1 \pm 23}{8} & x=\frac{1+23}{8}=3 \\
& x=\frac{1-23}{8}
\end{array}
\end{aligned}
$$

Agenda Monday:

1) Collect SG 16, 22, Class Project 2.
2) Lecture
3) Exam 3
