Math 115 Summer 2017 Lecture 14

Ch. 5 Polynomial Factoring & More

Zero-Sactor Property or Zero-Product Rule

If
$$A \cdot B = 0$$
, then $A = 0$ or $B = 0$, Maybe both.

 $O \cdot (x - 3) = 0$, $(x + 7) \cdot 0 = 0$

Solve $(x + 7)(x - 3) = 0$ by $Z \cdot F \cdot P \cdot (x + 7) = 0$
 $X + 7 = 0$ or $x - 3 = 0$
 $X = -7$
 $X = -7$

Solve
$$(x-5)(x+10)(2x-3)=0$$
 by Z.F.P.

Must be in factored one side has to be Zevo.

 $x-5=0$, $x+10=0$, $2x-3=0$
 $x=5$
 $x=10$
 $x=3/2$
 $x=3/2$

Solve
$$(x+7)(x-7)(4x+5)(4x-5)=0$$

by $\overline{2}.F.P.$

Let $\overline{1}$ $\overline{$

How to Solve Polynomial equations:

- 1) Make RHS = 0
- 2) Factor LHS completely
 - 3) Use Z.F.P. to find all Solutions

Solve
$$\chi^2 - 12 = \chi$$
 $\uparrow \chi^{-4} = 0$ or $\chi^{+3} = 0$
 $\chi^2 - 12 - \chi = 0$ $\chi^{-4} = 0$ $\chi^{-3} = 0$
 $\chi^2 - \chi - 12 = 0$ $\{-3, 4\}$

Solve $\chi^2 = 36 - 5\chi$

DMake RHS=0

- $\chi^2 36 + 5\chi = 0$
- Factor LHS Completely χ² +5χ-36=0

$$(x+9)(x-4)=0$$

3 use Z.F.P. to find all Solutions

$$\begin{array}{ccc}
x+9=0 & x-4=0 \\
\hline
x=-9 & x=4
\end{array}$$

$$\begin{array}{c}
x=4 & x=4
\end{array}$$

Solve:
$$3\chi-5=0$$
 $\frac{2}{3}\chi+1=0$

(1) $(3\chi-5)(\frac{2}{3}\chi+1)=0$ $\chi=\frac{5}{3}$ $\chi=\frac{3}{2}$

$$\begin{cases} -\frac{3}{2},\frac{5}{3} \end{cases}$$
(2) $\chi^2+8\chi+15=0$ $\chi^2+8\chi+15=0$ $\chi^2+8\chi+15=0$ $\chi^2-5-3\chi=0$

$$(\chi+5)(\chi+3)=0$$
 $\chi+5=0$ $\chi+5=0$ $\chi+3=0$ $\chi+5=0$ $\chi+3=0$ $\chi+5=0$ $\chi+3=0$ $\chi+5=0$ $\chi+3=0$ $\chi+3=0$

The area of a rectangular pool is

45 m². Its length is Im Shorter than

twice its width.

1) Draw & label

$$2x-1$$

2) Sind an expression for its area

 $A = LW$
 $= (2x-1)x$
 $= 2x^2-x$

Solve

The Sum of Squares of two consecutive even integers is 100.
$$x \in x+2$$
 $x \in x+2$ $x \in x+3$ $x \in x+2$ $x \in x+3$ $x \in x+2$ $x \in x+3$ $x \in$

Solve:

(1)
$$(\chi + 8)(2\chi - 7)(2\chi + 7) = 0$$
 $\chi + 8 = 0$, $2\chi - 7 = 0$, $2\chi + 7 = 0$
 $\chi = -8$
 $\chi = -\frac{7}{2}$
 $\chi = -\frac{7}{2}$

Solve:

$$49\chi^{2}(2\chi-5)-36(2\chi-5)=0$$
 $4^{2}-8^{2}$
 $(2\chi-5)(49\chi^{2}-36)=0$
 $(2\chi-5)(7\chi+6)(7\chi-6)=0$
 $\chi=\frac{5}{2}$
 $\chi=\frac{6}{7}$
 $\chi=\frac{6$

$$5x^{2} - 10x + 6x - 12 = 0$$

$$5x(x-2) + 6(x-2) = 0$$

$$(x-2)(5x+6) = 0$$

$$x=2 \quad x=\frac{-6}{5}$$

Factor Completely!

1)
$$2x^2 - 3x - 5 = 2x^2 - 5x + 2x - 5$$
 $= x(2x-5) + 1(2x-5) = (2x-5)(x+1)$
 $= x(2x-5) + 1(2x-5) = (2x-5)(x+1)$
2) $64x^2 - 25$
 $= (8x)^2 - 5^2$
 $= (8x)^2 - 5^2$
 $= (8x+5)(8x-5)$
 $= (2x+5)(4x^2 - 10x + 25)$

Find all intercepts for the graph of
$$y = 25x^2 - 100$$
. $x - 1 + 1 + 1 = 0$
 $y - 1 + 1 + 1 = 0$
 $y - 1 + 1 + 1 = 0$
 $y - 1 + 1 + 1 = 0$
 $y - 1 + 1 = 0$

Square-Root method:
If
$$\chi^2 = K$$
, $K \ge 0$, then $\chi = \pm \sqrt{K}$
Solve $\chi^2 - 5 = 20$
 $\chi^2 = 25$ Use S.R.M.
 $\chi = \pm \sqrt{25}$ $\chi = \pm 5$ $\left\{\pm 5\right\}$
Solve $\chi^2 + 4 = 44$ $-7\chi^2 = 40$ $\chi \approx \pm 6.324$
 $\chi^2 = 44 - 4$ $\chi = \pm \sqrt{40}$
Can be Simplified.

Solve
$$(3x-5)=49$$
 by S.P.M.
 $3x-5=\pm\sqrt{49}$
 $3x-5=\pm\sqrt{7}$
 $3x-5=1$
 $3x-5=1$
 $3x-5=-1$
 $3x=12$
 $x=4$
 $x=-\frac{2}{3}$

Solve by S.R.M.:
$$(2x+7)^2 = 121$$

 $2x+7 = \pm \sqrt{121}$
 $2x+7 = \pm 11$
 $2x+7=11$ $2x+7=-11$
 $x=2$ $x=-9$
 $x=-9$

Make a persect-square

$$\chi^{2} + 6\chi + 9 = (\chi + 3)^{2}$$
 $\chi^{2} - 10\chi + 25 = (\chi - 5)^{2}$
 $\chi^{2} + 15\chi + \frac{225}{4} = (\chi + \frac{15}{2})^{2}$
 $\chi^{2} - \frac{1}{5}\chi + \frac{1}{25} = (\chi - \frac{2}{5})^{2}$
 $\chi^{2} - \frac{1}{5}\chi + \frac{1}{25} = (\chi - \frac{2}{5})^{2}$
 $\chi^{2} - \frac{1}{5}\chi + \frac{1}{25} = (\chi - \frac{2}{5})^{2}$

Solve
$$\chi^2 - 10\chi - 24 = 0$$
 by Completing the square method.
 $\chi^2 - 10\chi - 24 = 0$
 χ^2

Solve
$$\chi^2 + 13\chi - 30 = 0$$
 by completing

the sqr method.

 $\chi^2 + 13\chi - 30 = 0$
 $\chi^2 + 13\chi - 30 = 0$
 $\chi^2 + 13\chi + \frac{169}{4} = 30 + \frac{169}{4}$
 $\chi^2 + \frac{13}{2} = \frac{17}{2}$
 $\chi^2 + \frac{13}{2} = \frac{17}{2}$

Quadratic Eqn:
$$0x^2 + bx + (=0) \cdot 0 + 0$$

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-13 \pm \sqrt{289}}{2a} = \frac{-13 \pm 17}{2}$
 $x = \frac{-13 \pm \sqrt{289}}{2a} = \frac{-13 \pm 17}{2}$
 $x = \frac{2}{2a} = \frac{2}{2} = 2$
 $x = \frac{-13 \pm \sqrt{289}}{2a} = \frac{-13 \pm 17}{2} = \frac{2}{30} = -15$

Solve
$$(2x-3)(3x+1)=7$$
 by $2x-3$ $(3x+1)=7$ by $2x-3$ $(3x+1)=7$ by $2x-3$ $(3x+1)=7$ by $2x-3$ $(3x+1)=7$ by $2x-3$ $2x$

The length of a rectargle with area
$$33 \text{ ft}^2$$
 is 1 ft shorter than 4 times its width. Find its dimensions. $33 \text{ ft} \text{ by 111}$ $\chi(4x+1) = 33$ $\chi(4x+1)$

Agenda Monday:

- 1) Collect SQ 16, 22, Class Project 2.
- 2) Lecture
- 3) Exam 3